Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis
نویسندگان
چکیده
During terminal differentiation of skeletal myoblasts, cells fuse to form postmitotic multinucleated myotubes that cannot reinitiate DNA synthesis. Here we investigated the temporal relationships among these events during in vitro differentiation of C2C12 myoblasts. Cells expressing myogenin, a marker for the entry of myoblasts into the differentiation pathway, were detected first during myogenesis, followed by the appearance of mononucleated cells expressing both myogenin and the cell cycle inhibitor p21. Although expression of both proteins was sustained in mitogen-restimulated myocytes, 5-bromodeoxyuridine incorporation experiments in serum-starved cultures revealed that myogenin-positive cells remained capable of replicating DNA. In contrast, subsequent expression of p21 in differentiating myoblasts correlated with the establishment of the postmitotic state. Later during myogenesis, postmitotic (p21-positive) mononucleated myoblasts activated the expression of the muscle structural protein myosin heavy chain, and then fused to form multinucleated myotubes. Thus, despite the asynchrony in the commitment to differentiation, skeletal myogenesis is a highly ordered process of temporally separable events that begins with myogenin expression, followed by p21 induction and cell cycle arrest, then phenotypic differentiation, and finally, cell fusion.
منابع مشابه
Calcineurin Activity Is Required for the Initiation of Skeletal Muscle Differentiation
Differentiation of skeletal muscle myoblasts follows an ordered sequence of events: commitment, cell cycle withdrawal, phenotypic differentiation, and finally cell fusion to form multinucleated myotubes. The molecular signaling pathways that regulate the progression are not well understood. Here we investigate the potential role of calcium and the calcium-dependent phosphatase calcineurin in my...
متن کاملExpression of connexins during differentiation and regeneration of skeletal muscle : functional relevance of connexin 43 Roberto Araya
The formation of skeletal muscle during development occurs via a series of cellular and molecular steps that lead to the formation of multinucleated myofibers. are key regulators in skeletal muscle ontogeny. MyoD and Myf5 are expressed during myogenesis and are markers of commitment to a muscle fiber fate (Braun et al. The onset of the terminal differentiation process is characterized in part b...
متن کاملComparative expression profiling identifies differential roles for Myogenin and p38α MAPK signaling in myogenesis.
Skeletal muscle differentiation is mediated by a complex gene expression program requiring both the muscle-specific transcription factor Myogenin (Myog) and p38α MAPK (p38α) signaling. However, the relative contribution of Myog and p38α to the formation of mature myotubes remains unknown. Here, we have uncoupled the activity of Myog from that of p38α to gain insight into the individual roles of...
متن کاملInhibition of in vitro myogenic differentiation by cellular transcription factor E2F1.
Terminal differentiation of cultured myocytes requires withdrawal of the cells from the cell cycle. Constitutive overexpression of several oncogenes in myoblasts can inhibit in vitro myogenesis. Here we studied the role of the cellular transcription factor E2F1 on myogenic differentiation. E2F1 expression is irreversibly down-regulated during differentiation of C2C12 myocytes. Furthermore, dere...
متن کاملCell heterogeneity upon myogenic differentiation: down-regulation of MyoD and Myf-5 generates 'reserve cells'.
When a proliferating myoblast culture is induced to differentiate by deprivation of serum in the medium, a significant proportion of cells escape from terminal differentiation, while the rest of the cells differentiate. Using C2C12 mouse myoblast cells, this heterogeneity observed upon differentiation was investigated with an emphasis on the myogenic regulatory factors. The differentiating part...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 132 شماره
صفحات -
تاریخ انتشار 1996